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ABSTRACT
Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights into
the generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of the
pulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography
3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are often
available for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete data
may introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction method
using cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. We
augment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have been
carried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns between
adjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstruction
results and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177342

I. INTRODUCTION

Significant advances have been made in inertial confinement
fusion (ICF) ignition techniques such as laser ignition1,2 and
Z pinches3–5 in recent years. Spatial structure diagnosis of the burn-
ing plasma during the ignition stage of ICF implosions is important
for evaluating the ignition state, verifying physical models, and
improving experimental parameters. Multiaxial passive imaging is
generally adopted to acquire three-dimensional (3D) information of
pulsed radiation sources. Only several two-dimensional (2D) line-
integral projections obtained at a few views are available, owing
to the short durations of pulsed sources and the limitations of
current technology. Projection images from up to four views are
captured at the Omega Laser7 (x-ray), the National Ignition Facil-
ity (NIF)8 (deuterium and tritium neutrons), and the Qin-1 facility6

[extreme ultraviolet (XUV)/soft x-ray (SR)]. The reconstruction of a
3D source with a minimal number of 2D projections is a severely ill-
posed problem. Some methods developed in computed tomography,
such as the algebraic reconstruction technique and the expectation
maximization algorithm, have been applied to the reconstruction
of pulsed radiation sources,7,9,10 but these introduce severe artifacts
into the reconstructed 3D image.

An approach based on basis function expansion has been pro-
posed that increases the possibility of accurate reconstruction of
pulsed radiation source with few-view data. Chen et al.11 represented
the radiation source as a sum of multiple 3D Gaussian functions
to perform 3D reconstruction with x-ray pinhole projection data
from three angles at the Gekko XII facility. Li et al.12 leveraged the
zeroth-order L shell to reconstruct the plasma density distribution of
the plasmasphere in the geomagnetic equatorial plane from extreme
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ultraviolet sensor data from the IMAGE satellite. Pecora13 derived an
analytical reconstruction algorithm by decomposing the radiation
source into a linear combination of spherical harmonic functions.
Volegov et al.7 applied this analytical algorithm to reconstruct the
x-ray source at the Omega Laser and the deuterium and tritium
neutron source at the NIF. They later developed an analytical recon-
struction method based on cylindrical harmonic decomposition and
used two-axis imaging data to reconstruct the neutron source at
the NIF.8 Analytical methods based on basis function expansions
are susceptible to the impact of noise in the measured projections,
and, owing to the limited number of views, the maximum expansion
order is limited, resulting in insufficient function expression capa-
bilities, which are prone to introducing artifacts in the reconstructed
image.14

Following the realization that convolutional neural networks
(CNNs) have the capacity for application to image processing,15–18

deep learning methods have been considered for use in the post-
processing procedure. Many effective algorithms based on CNNs
rely on training sets containing large amounts of data to adjust the
parameters. Nevertheless, it is difficult to have a large amount of
labeled data in pulsed radiation imaging, owing to the lack of real
3D distribution data. Ulyanov et al.19 proposed the concept of a deep
image prior (DIP). According to this, the CNN structure itself has
universal image prior information. The image can be recovered by
updating parameters of the generator network iteratively without
a training set, which makes it possible to suppress artifacts in the
image.

In this paper, we propose an iterative 3D image reconstruc-
tion algorithm based on cylindrical harmonic decomposition. It can
increase the expansion order of the basis functions and boost the
representation ability of the cylindrical harmonic functions. Fur-
thermore, we propose an image post-processing method based on
the DIP, which reduces artifacts in the reconstructed results through
unsupervised learning.

II. METHOD
Expanding the 3D intensity distribution of a pulsed radiation

source in cylindrical harmonic function, we get

S(r) =
M

∑
m=−M

sm(ρ, z)eimθ, (1)

where r = (ρ, θ, z) is a point in the cylindrical coordinate system,
M denotes the maximum expansion order of the cylindrical har-
monic functions, and sm are the expansion coefficients. Considering
that the source intensities are real numbers, we have the following
equation:

sm(ρ, z) = s∗−m(ρ, z). (2)

Expanding the source with non-negative m values, we have

S(r) = s0(ρ, z) + 2
M

∑
m=1

Re{sm(ρ, z)} cos mθ

− 2
M

∑
m=1

Im{sm(ρ, z)} sin mθ. (3)

Letting sma(ρ, z) = Re{sm(ρ, z)} and smb(ρ, z) = Im{sm(ρ, z)},
we get

S(r) = s0(ρ, z) + 2
M

∑
m=1

sma(ρ, z) cos mθ − 2
M

∑
m=1

smb(ρ, z) sin mθ⋅

(4)
In the iterative method, the expansion coefficients of the cylindrical
harmonic function decomposition are obtained as

sm = arg min
sm

L(Irec, I), (5)

where I denotes the projections of the experimental measurements
and Irec denotes the projections calculated by the reconstructed
source. The projections can be expressed as

Ireci = Pp̂i{S} , (6)

where Pp̂i{} denotes the projection operation, which represents the
projection of the source along the direction p̂i.

The objective function takes the form

L(Irec, I) =
λ

2VNxNy

V

∑
i=1
∥Ireci(x, y) − Ii(x, y)∥2

2 + ∥Ks∥TV, (7)

where V is the number of imaging views, NxNy is the pixel num-
ber of a projection image, ∥⋅∥2 denotes the l2 norm and ∥⋅∥TV the
total variation,20 s is the vector of expansion coefficients, and K is
the transform matrix from coefficients to image.

s can be solved by the following optimization problem:

min
s,d

λ
2
∥I − As∥2

2 + ∥d∥1, s.t. d = Ð→∇[Ks] ≡ φ(s), (8)

where A is the product of the projection matrix P and the
transformation matrix K. We convert this into an unconstrained
problem:

min
s,d

λ
2
∥I − As∥2

2 + ∥d∥1 +
μ
2
∥d − φ(s)∥2

2. (9)

The iteration steps are as follows, using the alternating direction
method of multiplier (ADMM) algorithm:21

sk+1
= min

s

λ
2
∥I − As∥2

2 +
μk

2
∥dk
− φ(s) − bk

∥
2

2
, (10)

dk+1
= shrink(φ(sk+1

) + bk,
1
μk
), (11)

bk+1
= bk
+ φ(sk+1

) − dk+1. (12)

The problem (10) is solved by a quasi-Newton method called
L-BFGS.22,23 The parameter μ is updated adaptively during the
iteration:24

μk+1 = {
γμk, Δk+1 ≥ ηΔk,
μk, Δk+1 < ηΔk,

(13)
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Δk+1 ≡
1
√

n1
∥sk+1

− sk
∥

2

2

+
1
√

n2
(∥dk+1

− dk
∥

2

2
+ ∥bk+1

− bk
∥

2

2
), (14)

where γ > 0 and η ∈ [0, 1).
The initial value will affect the result of the iteration under the

condition of incomplete data. In the algorithm, we take the result
of the analytical method of cylindrical harmonic function decom-
position as the initial value of the iterative method. The maximum
expansion order of the analytical method is Ma = V . The iterative
method is shown in Algorithm 1.

To enhance the quality of reconstructed images, we reprocess
the iterative results of the cylindrical harmonic decomposition. We
utilize a CNN with coding structure similar to U-Net25 to reduce
artifacts from the reconstructed 3D image by unsupervised learning.
The structure of the neural network is illustrated in Fig. 1. The chan-
nels are gradually doubled from 8 to 128 in the contracting path with
downsampling convolutions, while they are halved in the expansive
path. There are two concatenations in the middle of the network
structure. A sigmoid activation function is appended at the final
layer to map the output values to the interval of (0,1). The length
and width of the neural network input are the same as the image size
of the reconstruction result. The input value is random noise with a
Gaussian distribution. The output is an image of the same size as the
input.

The loss function is given by the following formula:

Lt = α1MSE(St , S) + α2L1(P{St}, I) + α3L1(St , St−1)

+ α4

Nz−1

∑
z=1

MSE(St(z), St(z + 1)),

ALGORITHM 1. Iterative method using cylindrical harmonic decomposition.

Parameters: M, maximum expansion order; K , iteration number;
ε, difference between the projection images of the results in two
adjacent iterations; λ, μ0, d0, b0, parameters of ADMM algorithm;
γ, η, adaptive updating parameters.
1: Calculate sm by analytical algorithm, t ← 0, s(0)

← sm.
2: Compute S(0)(r), I(0)rec ← Pp̂{S(0)}.
3: for k = 1, . . . , K do
4: t ← t + 1
5: for nz = 1 : Nz do
6: Obtain s(t) by L-BFGS algorithm.
7: Compute S(t)(z), set S(t)(zj) = 0 if S(t)(zj) < 0.

8: dt ← shrink(φ(s(t)) + bt−1, 1
μt−1
)

9: bt ← bt−1 + φ(s(t)) − dt

10: Update μt
11: end for
12: if 1

NxNy
I(t)rec − I(t−1)2

rec 2 ≤ ε, break;

13: end for

FIG. 1. Structure of neural network.

where αi ∈ [0, 1] are the parameters, MSE(⋅) denotes the mean-
square error, and L1(⋅) denotes the l1 norm. St = fΘ(η) is the output
3D image of the neural network at the tth iteration, η is the random
noise image, fΘ is the CNN with parameters Θ, S is the image of the
iterative reconstructed result, St(z) is the 2D image of the output
image at layer z, and Nz is the number of layers. The algorithm for
reducing artifacts is shown in Algorithm 2.

ALGORITHM 2. Artifact reduction via deep image prior.

Parameters: σ, standard deviation of Gaussian noise; Ke, epochs;
lr , learning rate
1 η ∼ U(0, 0.1):
2: for t = 1, . . . , Ke do
3: ξ ∼ N(0, σ) η← η + ξ,
4: calculate loss Lt
5: update Θ using Adam
6: end for
7: S← f Θ(η)

FIG. 2. The angular distribution of the imaging axes: 1, (90○,180○); 2, (90○,135○);
3, (90○,90○); 4, (90○,45○); 5, (90○,22.5○).
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FIG. 3. 3D reconstructed results of three different algorithms. (a1)–(a3) Perspective view, 3D view and slice image at x = 0 of simulated data, respectively. (b1)–(b3) Results
of analytical method. (c1)–(c3) Results of iterative method. (d1)–(d3) Results of DIP processing.

FIG. 4. 3D reconstructed results of three different algorithms with noisy data. (a1)–(a3) Perspective view, 3D view, and slice image at x = 0 of analytical results, respectively.
(b1)–(b3) Results of iterative method. (c1)–(c3) Results of DIP processing.
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III. SIMULATION
We reconstructed the simulated data of an aluminum single-

wire Z pinch. Owing to technological limitations, we can currently
only simulate 2D cross-sectional data of the plasma. Axisymmetric
rotation on the sectional data is performed to obtain 3D data. Then,
the 3D data are projected in five horizontal angles. Figure 2 shows
the distribution of these five angles.

We apply the analytical method, iterative method, and the iter-
ative and DIP post-processing algorithm, respectively, to reconstruct
the source. In the iterative method, the maximum expansion order
M = 5 and the number of iterations K = 20. The other parameters
are set as follows: λ = 1, μ0 = 0.01, d0 = 0, b0 = 0, γ = 2, and η = 0.9.
In the DIP procedure, the standard deviation σ = 1/30, the epochs
Ke = 2400, and the learning rate lr = 0.01. The parameters of the loss
function are set as α1 = 0.9, α2 = 0.1, α3 = 0.1, and α4 = 0.1. The code
in this paper consists of MATLAB and Python code, running on
MATLAB R2022a and Python3.9 software, respectively. The hard-
ware platform is an Intel Xeon Platinum 9242 CPU@2.30 GHz and
a 24 GB NVIDIA RTX3090 GPU. The analytical method and iter-
ative method take ∼7 and 30 min, respectively, to get the solutions.

The running time of the iterative and DIP post-processing algorithm
is relatively long, with the iterations of the DIP taking most of the
time (2.5 h for 2400 iterations) and a complete reconstruction taking
about 3 h.

The results are shown in Fig. 3. The perspective images show
a significant difference between the 3D distribution of the analytical
results and the simulation data. The results of the iterative method
have vertical artifacts, while results of the iteration with DIP have
fewer artifacts and are closer to the simulated data. To evaluate the
impact of noisy projection data on reconstruction algorithms, 5%
Gaussian noise is added to the projection data, and the reconstruc-
tion results of the three algorithms in this case are shown in Fig. 4. It
can be seen that both the analytical and iterative methods are subject
to strong noise interference, resulting in significant reconstruction
errors, while the iteration with the DIP algorithm can maintain a
high-quality result. The projections of the reconstructed results are
shown in Fig. 5. The analytical results exhibit large errors between
the projections of the reconstruction and simulation data, while the
results of the iteration with DIP exhibits the smallest projection
errors in both data cases. The convergence curve of the iterative

FIG. 5. Comparison between projections of reconstruction results and simulation data projections. (a1) Projection of simulation data at angle 1. (a2) Projection with noise.
(b1) and (b2) Difference images between simulation data projection and projection of analytical results with and without noisy data. (c1) and (c2) Difference projection images
of iterative results with and without noisy data. (d1) and (d2) Difference projection images of iteration with DIP results with and without noisy data.

FIG. 6. Convergence curve of iterative process (a) and loss curve of DIP (b) with and without noisy data.
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TABLE I. Image assessment indices of sources reconstructed by the analytical
method (AM), the iterative method (IM), and iteration with DIP (IM+DIP). Boldface
denotes that the image assessment index of corresponding algorithm is better than
that of other algorithms.

Algorithm SSIM PSNR RMSE(S) RMSE(I)

Without noise
AM 0.811 15 27.596 0.041 71 7.7679
IM 0.955 87 39.872 0.010 15 1.0324

IM+DIP 0.979 49 42.454 0.007 54 0.2957

With noise
AM 0.750 02 26.971 0.044 82 8.1900
IM 0.828 43 32.365 0.024 09 2.3296

IM+DIP 0.955 21 39.607 0.010 46 0.5068

FIG. 7. Schematic of XUV/SR pinhole imaging system.6

process and the loss curve of the DIP are shown in Fig. 6. The iter-
ative and DIP processes converge in both cases. The convergence
value is larger with noisy data. Numerical evaluations are used to cal-
culate the indices of the reconstruction results, including structural
similarity (SSIM),26 peak signal-to-noise ratio (PSNR), root mean
square error between 3D reconstruction results and 3D simulation
data [RMSE(S)], and root mean square error between reconstruc-
tion result projections and simulation projections [RMSE(I)]. The
SSIM index of two 3D images X, Y is defined as:

SSIM = [l(X, Y)]α[c(X, Y)]β[s(X, Y)]γ

where l(X,Y), c(X,Y), and s(X,Y) are the luminance comparison
function, the contrast comparison function, and the structure com-
parison function, respectively. α, β, γ > 0 are parameters to adjust
the relative importance of these three terms. The results are shown
in Table I. The evaluations show that in both noiseless and noisy
cases, the results of the iteration with the DIP algorithm are better
than those of the iterative method, and remarkably outperform the
analytical algorithm.

IV. EXPERIMENTAL RESULTS
We carried out a five-axis imaging experiment of a single-

wire Z pinch on the double pulse current generator Qin-1 facility,
which couples a ∼10 kA 20 ns prepulse generator and a ∼450 kA
400 ns main current generator.27,28 Details of the Qin-1 facility
can be found in Ref. 29. We measured the extreme ultraviolet/soft
x-ray (XUV/SR) photons emitted from the Z-pinch plasma at five
angles. Figure 7 illustrates the components of the XUV/SR pinhole
imaging system. The values of the optical image captured by the
CMOS camera are approximately proportional to the number of
photons emitted by the plasma during the gating time (∼3 ns) of
the microchannel plate. The principle of the pinhole imaging system
is described in Ref. 6. The system can obtain 2D integral projec-
tions of the x-ray source in five views at four moments in a one-shot
experiment.

A 30 μm silver single wire with a height of 20 mm was used
for Z-pinch imaging in shots 2 023 052 405 and 2 023 052 406. The
object distance was 300 mm, and the image distance was 224 mm.
The four different imaging moments were T1 = 0 ns, T2 = 40 ns,
T3 = 80 ns, and T4 = 120 ns. The starting times of the main pulse
current in shots 2 023 052 405 and 2 023 052 406 were T01 = −100 ns
and T02 = −80 ns, respectively. The raw projection data and the pre-
processed image (pseudocolor image) of angle 1 from shot 2 023 052
405 are shown in Fig. 8. The projection image has four divisions,
with an interval of 40 ns between adjacent divisions. Starting from
Fig. 8(b), time increases in the clockwise direction.

The number of source voxels is 200 × 200 × 460 and the
size of each voxel is about 45 × 45 × 45 μm3. We employ the ana-
lytical method and the iterative method with DIP to perform 3D

FIG. 8. (a) Raw projection data and (b)–(e) preprocessed images of angle 1 from shot 2 023 052 405.
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FIG. 9. 3D spatial distributions of XUV/SR emission reconstructed by analytical method. (a1)–(a4) Reconstructed 3D images from shot 2 023 052 405 at T1, . . ., T4,
respectively. (b1)–(b4) Perspective images from shot 2 023 052 405 at T1, . . ., T4, respectively. (c1)–(c4) Reconstructed 3D images from shot 2 023 052 406 at T1, . . ., T4,
respectively. (d1)–(d4) Perspective images from shot 2 023 052 406 at T1, . . ., T4, respectively.
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FIG. 10. 3D spatial distributions of XUV/SR emission reconstructed by the iterative method with DIP. (a1)–(a4) Reconstructed 3D images from shot 2 023 052 405 at T1, . . .,
T4, respectively. (b1)–(b4) Perspective images from shot 2 023 052 405 at T1, . . ., T4, respectively. (c1)–(c4) Reconstructed 3D images from shot 2 023 052 406 at T1, . . .,
T4, respectively. (d1)–(d4) Perspective images from shot 2 023 052 406 at T1, . . ., T4, respectively.
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FIG. 11. Slice images of XUV/SR emission reconstructed by the iterative method with DIP. (a1)–(a4) XUV/SR emission slice images at z = −47 from shot 2 023 052 405 at
T1, . . ., T4, respectively. (b1)–(b4) XUV/SR emission slice images at z = 113 from shot 2 023 052 405 at T1, . . ., T4, respectively.

reconstruction from the experimental data. The results of the ana-
lytical method, with maximum expansion order Ma = 5, are shown
in Fig. 9. The analytical algorithm can roughly reconstruct the con-
tour of the radiation area, and some hot spots are visible along the z
axis. However, there remain massive burr-like artifacts in the recon-
struction results, with the shape and distribution of the hot spots
greatly disturbed. The internal 3D radiation distribution is severely
degraded. The analytical method is unable to obtain high-quality
reconstructed images.

In the iterative algorithm, the maximum expansion order
M = 30 and the number of iterations K = 20. The standard devia-
tion of random noise with Gaussian distribution was set to 1/30.
The parameters of the network were updated by 2400 iterations
using the Adam30 optimization method with learning rate set to 0.01.
Figure 10 shows 3D spatial distributions of XUV/SR emission from
the two shots at four moments reconstructed by the iterative method
with DIP. Slice images at z = −47 from shot 2 023 052 405 and at
z = 113 from shot 2 023 052 405 are shown in Fig. 11. The plasma
is in the Z-pinch run-in phase of accelerating inward implosion at
T1. At this time, XUV/SR radiation has already been generated, and
there are some hot spots with strong radiation along the z axis. At
time T2, which is near the stagnation phase, the plasma is com-
pressed to a small size and forms a thin cylindrical structure, with its
radiation reaching maximum. T3 and T4 are in the plasma collapse
phase after stagnation, the radiation weakens, and the 3D distribu-
tion gradually becomes irregular. Compared with shot 2 023 052 405,
the hotspot in shot 2 023 052 406 is more evenly distributed on the
z axis and has a higher overall compression rate. It can be seen from
the z-slice images at the strongest radiation spot that near the stag-
nation phase, the hotspot in shot 2 023 052 406 is closer to a circular
shape and is more uniform than that in shot 2 023 052 405.

V. DISCUSSION
The projection angle is not limited to a distribution in the same

plane by the proposed algorithm. The iterative method still works
when the imaging angle is not horizontally distributed. It is also
applicable for other projection modes, such as cone beam. Our algo-
rithm has a good suppressive effect on noisy data. Prior knowledge

about plasma and imaging could be added in iteration, such as noise
characteristics and image smoothness.

The inclination angle of pinhole imaging in our experiment is
∼1/15, and in the single-wire Z-pinch experiment, the radial size of
the plasma pinch process before the stagnation phase with which
we are concerned is also very small. Therefore, we adopt the paral-
lel beam imaging mode to approximate the pinhole imaging.31 The
alignment of multi-axis imaging systems directly affects the regis-
tration of imaging data from various angles. Currently, we manually
register data from five angles based on the features in projections,
which introduces a certain degree of error to 3D reconstruction.
Self-absorption on the photons emitted by the plasma in our Z-pinch
experiment occurs when the wavelength is in the XUV band. The
algorithm currently does not take account of the influence of this
attenuation, which is also a possible factor leading to reconstruction
errors.

In the future, we will conduct experimental calibration on the
center of multi-axis imaging, improve the synchronization accuracy
of the system, and calibrate the response of different axis imaging
devices to obtain high-precision imaging data. We will consider the
impact of attenuation to reduce reconstruction errors and obtain
more accurate and reliable information of the reconstructed source.
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